
Optimization of neural network computations
by reducing the precision of numbers
Medric Bruel Djeafea Sonwa*

*medric49@gmail.com
+Grenoble INP - Ensimag, 38000 Grenoble, France

ABSTRACT

The current generation of neural networks requires a lot of resources in terms of storage and computing time.
Due to the high number of parameters needed in this networks and the high precision of numbers (integers
and floating point numbers) representing the weights and bias, the computations take a lot of time. it’s hard to
imagine integrating this generation of neural networks in embedded systems, such as drones or microcontrollers
that do not have a high power. Having noted this problem, new research has looked into the possibility of
reducing the number of bits on which neural networks parameters are represented in order to reduce computing
time and memory requirements. Thus, in this paper we present the formulations mathematics of two of them:
the binarization which consists in reducing weights and outputs in the binary set {−1,+1}, and the ternarization
which consists in reducing weights into the set {−1,0,+1}. We explain in this paper how to implement these
types of neural networks, efficient in terms of memory and computation time, based on research and open
source projects related to this issue. We also present a learning algorithm adapted to these neural networks.
And finally, we’re redefining the arithmetic operations to fit the operands of the set {−1,+1}, so that they can be
used in simplified systems that operate in binary.

1 Introduction
The use of neural networks to solve complex problems has particularly increased in recent years. This increase

has led to an evolution in the architectures of neural networks in order to make them more efficient. These neural
networks are built from mathematical entities called neurons. A neuron being an object which from input data
produces an output result, using a function called the activation function1. The calculation of the final result of
these neural networks is done through numerous machine operations which, in general, have a non-negligible
cost in time and energy. Since current neural networks (NN) are built on the basis of floating-point numbers, the
arithmetic operations compatible with these numbers are all the more costly in time and energy2. Depending
on the number of operations performed, this time becomes enormous and it is more than necessary to reduce it.
Moreover, it becomes impossible to import these networks built in embedded systems.

A new method of implementing neural networks was then thought, it is the binarization of weights and biases
of neurons and possibly of the results of activation functions3. The idea that we want to explore in this paper is
the possibility of optimizing computational operations in neurons by reducing the number of representation bits
of neural network parameters. In this paper we make our contribution through the following points:

• We present binary neural networks and we explain the mathematical notion behind binary neural networks,
while presenting the problems behind the parameters of these binary neurons. Thus, we explain the process
of binarization of the parameters and outputs, of our network, in the set {−1,+1}.

• Taking into account the mathematical modeling and the constraints related to the computation of the error
in this binary context, we present a learning algorithm for binary neural networks sufficiently robust to
allow a good optimization of weights and biases.

• We extend this optimization study to ternary neural networks. We study the mathematical model that will
allow the implementation of neural networks whose weights and outputs belong to the set {−1,0,+1}.

• We present a method for learning ternary networks, based on a defined mathematical model and facing the
problem of ternarization of weights.

• We reformulate addition and multiplication operations for use in binary neural networks. These operations
are presented in such a way that they can be used in lightweight systems that work on 1-bit representable
numbers. In our case, these numbers will be the weights and outputs of our networks.

We present two inspiring projects on which this study is based and which more or less implements the
concepts discussed: the project brevitas4 and the project qnn-inference-examples5.

2 Principle of binary neural networks
The first approach for the optimization of computations in neural networks is the binarization of weights and

biases of neurons, and the binarization of their outputs. In other words, weights and biases can only have 2
possible values, which limits their representation to one bit. Neuron outputs can also be transformed so that they
are represented on a single bit. This leads to a loss of information, so depending on the precision we wish to have
and the execution time we can tolerate, we can determine whether or not we also wish to convert the outputs of
the neurons on a certain number of bits.

Knowing that weights and biases have been reduced to a number of bits, as well as the input data, versions
of arithmetic operations (addition, subtraction, etc.) can be designed specifically for operations with a limited
number of values6. The goal is to speed up the execution speed of these operations. Indeed, an addition operation
designed for 2-bit operands will have a lower cost than an operation designed for 8-bit operands.

2.1 Mathematical formulation
When training neural networks, the real values of the weights (including bias) are not limited, it is necessary

to convert these values to 2 possible values -1 or 1. Let us note w the real value of the weight of a neuron, and wb

the conversion on the set {−1,+1} of this weight.
The first function that retrieves wb is the deterministic binarization3:

wb =

{
+1 i f w≥ tw
−1 i f w < tw

Where tw is a threshold value that is a function of w, which is either fixed or variable and whose value can
vary during the learning process of the neuron. It is common to set tw to 0 independent of w.

Another method of determining wb is the stochastic binarization3:

wb =

{
+1 with prob. σ(w)
−1 with prob. 1−σ(w)

Where σ is the sigmoid function given by:

σ(z) =
1

1+ exp(−z)

The determistic binarization is preferable in our context because it is easy to implement and requires less
machine calculation. However, with this method, the problem of threshold choice arises. Although we can
directly set it to 0, we can also find an optimal value for it by calculating the error committed on its choice. This
error is :

Ew(tw) = (w−wb)2 = (w− (−1)1w<tw)2

And so, an optimal choice of tw is then :
t∗w = argmin

tw∈]−ε,ε[

Ew(tw)

Where epsilon is a positive number close to zero.

2/6

Let’s consider the ith layer of an NN, whose weight matrix is Wi and the bias vector is bi. Let’s consider the
input x, we have : z =Wix+bi.

The final real-valued vector of this layer is : a = activation(z)
Where activation is a the activation function7 of this layer. It can be sigmoid, tanh, ReLU etc.
So, to get the value, in the set −1,+1, of a, a binarization is applied to that result:

ab =

{
+1 i f a≥ 0
−1 i f a < 0

Another practice would be to replace the activation function by binarization, our expression would become :

ab = a =

{
+1 i f z≥ 0
−1 i f z < 0

2.2 Learning process
The learning of a binarized NN is done by considering the particular characteristic of the derivative of the loss

functions8.

Let us note by Loss() the loss function that we will use, Binarize() the binarization function that will be used
to translate the weights and outputs into the {−1,+1} set. Let us note by J the value of the error given by the
loss function. And finally, given x any parameter, ∆x designates the partial derivative9 of the error with respect to
x, thus ∆x =

∂J
∂x .

Thus, a proposal for a learning algorithm for a binary network, inspired by the one provided in the paper
Binarized Neural Networks3, is this:

Algorithm 1: Algorithm for learning a binary neural network

for k = 1 to L do
W b

k ← Binarize(Wk)
ak←W b

k ab
k−1

if k < L then
ab

k ← Binarize(ak)
end

end
J← Loss(aL,y)
∆aL ← ∂J

∂aL

for k = L to 1 do
if k < L then

∆ak ← ∆ab
k
∗1|ak|≤1

end
∆ab

k−1
←W b

k ∆ak

∆W b
k
← ab

k−1∆T
ak

end
for k = 1 to L do

Wk←Wk−λ ∗∆W b
k

end

The learning algorithm does not really change from the one known by everyone. It is in fact a double learning,
in which the neural network has improved its real parameters, and its binary parameters, and the neural network
has improved its binary parameters.

When the learning process is complete, what we get are parameters W b
k ∀ k = 1 to L. These weights (and

biases) constitute our new lightened neural network, because they are represented on 1 bit. We can then adopt the

3/6

formatting:

wb =

{
12 i f wb = 1
02 i f wb =−1

Where x2 is a number written in base 2. For example 102, 110102, 1001012 etc. Since our parameters will
now be translated into base 2, we will be defining new operations for addition, subtraction, etc.

3 Ternary neural network approach
The use of binary neural networks greatly reduces the time and complexity of the calculations, but in exchange

decreases the accuracy of the neural networks. Thus, to improve this, while keeping the complexity of operations
reduced, The principle is that the weights and biases of neurons are no longer represented on 1 bit at values of -1
or 1, but rather on 2 bits and with values in the set {−1,0,+1}. As before, arithmetic operations constructed for
operands with values in the {−1,0,+1} set are necessary to ensure speed of execution.

3.1 Mathematical formulation
The approach of the ternarization of the parameters is similar to that of the binarization. However, it is

necessary to to take into account the thresholds. Let’s consider a parameter w of any neuron, the process to
ternarize it is the following10 :

wb =

−1 i f w < tw,1
0 i f tw,1 ≤ w≤ tw,2
+1 i f tw,2 < w

Where tw,1 and tw,2 are the two thresholds that indicate a change in value.

3.2 Learning Process
The learning algorithm of a ternary neural network is similar to that of a BNN. The difference is the way to

modify of weights and outputs. Indeed, a Ternarize() function will be applied, instead of Binarize(). But there
is a problem, what thresholds will we use? The answer to this question is complex, because a wrong choice
of thresholds would lead to a big loss of information. Contrary to BNNs which have only one threshold and

generally set at 0, the thresholds of BNNs must vary. These are moreover subject to this constraint :

{
tw,1 ≤ 0
tw,2 ≥ 0

A method used to calculate a suitable value for the thresholds would be to go through the error calculation on
the approximation of the weight w by wb11. Thus, the error made on the approximation of w by wb is:

Ew(tw,1, tw,2) = (w−wb)2 = (w−Ternarize(w, tw,1, tw,2))2

And so the new optimal thresholds t∗w,1 and t∗w,2 resulting from this error are given by :

t∗w,1, t
∗
w,2 = argmin

tw,1≤0,tw,2≥0
Ew(tw,1, tw,2)

4 Adaptation of arithmetic operations
As previously mentioned, in order to optimize the CPU operation time, it is necessary to define new mathematical
operations for our sets {−1,+1} and {−1,0,+1}. Once our neural network has finished learning and has been
implemented in an embedded system, the neural network now considers its parameters as binary or ternary. In
the case of BNN, let’s recall that the representation adopted by the weights :

wb =

{
12 i f wb = 1
02 i f wb =−1

This representation allows us to define the arithmetic operations +̄ (representing +) and ∗̄ (representing ∗) in
the following way:

4/6

Logical operation Mathematical translation
12+̄12 = 12 1+1 = 2≈ 1

12+̄02 = 02+̄12 = 12 1+(−1) = 0≈ 1
02+̄02 = 02 (−1)+(−1) =−2≈−1

Logical operation Mathematical translation
12∗̄12 = 12 1∗1 = 1

12∗̄02 = 02∗̄12 = 02 1∗ (−1) =−1
02∗̄02 = 12 (−1)∗ (−1) = 1

It follows from these tables that, the operation +̄ is actually the logical or, and the operation ∗̄ is the logical
xnor. So we have: {

x +̄ y = x or y
x ∗̄ y = x xnor y

The operations +̄ and ∗̄, being defined, can be used as addition and multiplication operations in our embedded
systems, the weights and outputs now being 1-bit numbers.

Thus, let’s consider a neuron implemented in a device running with 1-bit numbers. The weight vector of the

neuron is w =

[
w1
w2

]
and the bias is b.

The result of the activation for an input a =

[
a1
a2

]
by this neuron is given by :

z = a1∗̄w1+̄a2∗̄w2+̄b = (a1 xnor w1) or (a2 xnor w2) or b

5 Conclusion
In this paper, we have studied the mathematical model behind binary and ternary neural networks and the

problems related to these new architectures. This allowed us to approach an algorithm that would allow the
learning of these types of networks, whose weights and outputs are restricted values, all this with the sole aim of
optimizing the storage and computation time of these neural networks. Current research shows that this problem
is not in vain, and deserves more attention. Indeed, this new generation of neural networks would undoubtedly
be a very good way to improve the performance of our embedded systems, our chips and microcontrollers or any
other equipment that does not have a high computing power. It is a non-negligible way to give intelligence to all
our equipment.

References
1. Abraham, A. Artificial neural networks. Handb. measuring system design 901–903 (2005).

2. Goldberg, D. What every computer scientist should know about floating-point arithmetic. ACM Comput.
Surv. (CSUR) 23, 5–48 (1991).

3. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Binarized neural networks. In Advances
in neural information processing systems, 4107–4115 (2016).

4. Xilinx. Brevitas: quantization-aware training in pytorch. https://xilinx.github.io/brevitas/.

5. Jupyter notebook examples on image classification with quantized neural networks. https://github.com/
maltanar/qnn-inference-examples.

6. MacSorley, O. L. High-speed arithmetic in binary computers. Proc. IRE 49, 67–91 (1961).

7. Karlik, B. & Olgac, A. V. Performance analysis of various activation functions in generalized mlp architec-
tures of neural networks. Int. J. Artif. Intell. Expert. Syst. 1, 111–122 (2011).

8. Bottou, L. Stochastic gradient learning in neural networks. Proc. Neuro-Nimes 91, 12 (1991).

5/6

https://xilinx.github.io/brevitas/
https://github.com/maltanar/qnn-inference-examples
https://github.com/maltanar/qnn-inference-examples

9. Speelpenning, B. Compiling fast partial derivatives of functions given by algorithms. Tech. Rep., Illinois
Univ., Urbana (USA). Dept. of Computer Science (1980).

10. Alemdar, H., Leroy, V., Prost-Boucle, A. & Pétrot, F. Ternary neural networks for resource-efficient ai
applications. In 2017 International Joint Conference on Neural Networks (IJCNN), 2547–2554 (IEEE,
2017).

11. Mellempudi, N. et al. Ternary neural networks with fine-grained quantization. arXiv preprint
arXiv:1705.01462 (2017).

6/6

	Introduction
	Principle of binary neural networks
	Mathematical formulation
	Learning process

	Ternary neural network approach
	Mathematical formulation
	Learning Process

	Adaptation of arithmetic operations
	Conclusion
	References

